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BACKGROUND. Novel biomarkers to identify infectious patients transmitting Mycobacterium 
tuberculosis are urgently needed to control the global tuberculosis (TB) pandemic. We hypothesized 
that proteins released into the plasma in active pulmonary TB are clinically useful biomarkers to 
distinguish TB cases from healthy individuals and patients with other respiratory infections.

METHODS. We applied a highly sensitive non-depletion tandem mass spectrometry discovery 
approach to investigate plasma protein expression in pulmonary TB cases compared to healthy 
controls in South African and Peruvian cohorts. Bioinformatic analysis using linear modeling and 
network correlation analyses identified 118 differentially expressed proteins, significant through 
3 complementary analytical pipelines. Candidate biomarkers were subsequently analyzed in 2 
validation cohorts of differing ethnicity using antibody-based proximity extension assays.

RESULTS. TB-specific host biomarkers were confirmed. A 6-protein diagnostic panel, comprising 
FETUB, FCGR3B, LRG1, SELL, CD14, and ADA2, differentiated patients with pulmonary TB from 
healthy controls and patients with other respiratory infections with high sensitivity and specificity 
in both cohorts.

CONCLUSION. This biomarker panel exceeds the World Health Organization Target Product 
Profile specificity criteria for a triage test for TB. The new biomarkers have potential for further 
development as near-patient TB screening assays, thereby helping to close the case-detection gap 
that fuels the global pandemic.
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Introduction
Tuberculosis (TB) remains a disease of  global significance, causing 1.3 million deaths and 10.6 million 
cases of  active disease worldwide each year (1). Unfortunately, global control efforts have recently faltered 
due to the COVID-19 pandemic (2). The World Health Organization (WHO) has identified a global case 
detection gap of  4 million patients between the estimated incident cases and confirmed diagnoses, with 
undiagnosed cases predominantly occurring in high-TB-burden countries. Diagnostic delays in low- and 
middle-income settings are often many months (3) and associate with increased risk of  cavitary disease and 
sputum smear positivity, reflecting high infectiousness (4). Most TB cases result from recently transmitted 
Mycobacterium tuberculosis infection, and therefore the missed diagnoses increase M. tuberculosis transmis-
sion, TB disease and mortality, and fuel the ongoing pandemic (5).

TB control strategies are limited by the currently available diagnostics, which demonstrably are not 
meeting the needs for global control, requiring specific infrastructure and skilled operators, and do not meet 
the requirements of  the WHO Target Product Profile (TPP) (6). Diagnostic biomarkers capable of  identify-
ing people with infectious TB in high-burden settings, ideally at the point of  care and not requiring sputum 
expectoration, are urgently needed. A new screening test would not only benefit individuals by enabling 
prompt and effective treatment, but would also be a fundamental tool for potential TB elimination, which 
remains a key goal for the WHO (7).

Proteins are excellent candidates for diagnostic biomarkers, being stable and utilizable for near-pa-
tient diagnostic tests. Several studies have explored potential host plasma protein biomarkers of  TB (8–16), 
and although numerous candidate proteins have been detected, biomarkers or combinatorial biomarker 
signatures have not yet been found that can reliably differentiate TB from other respiratory diseases, or 
predict progression (17). Most discovery mass spectrometry–based (MS-based) proteomic studies to date 
have depleted highly abundant protein components from plasma (10–12). This reduction in plasma protein 
complexity simplifies the analysis, but will also concurrently deplete proteins of  biological interest (18–20). 
Candidate host proteins identified to date as biomarkers of  TB disease are frequently highly sensitive but 
poorly specific (13–15).

We hypothesized that analysis of  plasma from individuals with pulmonary TB and healthy controls 
(HCs) using a non-depletion untargeted proteomics method previously optimized to provide a uniquely 
high proteome coverage would identify novel markers that achieve both high sensitivity and specificity for 
TB disease. Here, we report the most detailed plasma proteome of  TB to date and perform validation of  
upregulated proteins by a complementary antibody capture technique in 2 separate clinical cohorts, includ-
ing patients with other respiratory infections (ORI). We demonstrate the diagnostic potential of  an opti-
mized panel incorporating the newly identified biomarkers alongside established analytes that has potential 
to be developed into a near-patient screening test.

Results
Discovery proteomic analysis of  non-depleted plasma. The overall study design is presented in Figure 1. Plasma 
samples were analyzed from 11 untreated male patients with active pulmonary TB and 10 male HC sam-
ples, from South African and Peruvian cohorts, using a protocol that involved no depletion steps (21). Each 
plasma sample was initially separated into 4 segments by size exclusion chromatography, and each segment 
was processed individually. Analyses of  plasma segments were performed in 12 iTRAQ (isobaric tags for 
relative and absolute quantification) 8-plex experimental sets in a block-randomized design comprising 3 
experimental sets. Each iTRAQ experiment contained a bridging master-pool plasma sample run in every 
experiment. HCs were matched to TB samples by age, ethnicity, and smoking status within each iTRAQ 
set (Supplemental Tables 1 and 2; supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.173273DS1). Protein abundances from the plasma segments and multi-consensus 
reports were combined and adjusted for experimental batch effects (Supplemental Figures 1 and 2). Pro-
tein abundances from 1 TB sample failed normalization, leading to exclusion from downstream analysis. 
An additional TB sample clustered with controls. On review of  the clinical data, the patient had minimal 
chest x-ray infiltration and normal C-reactive protein (CRP), and so did not fulfil study inclusion crite-
ria, and was also excluded from downstream analysis. Protein abundances from the remaining combined 
plasma segment proteomes between experimental sets and the combined multi-consensus proteomes were 
analyzed by complementary bioinformatic approaches to identify candidate diagnostic protein biomarkers 
(Figure 2). In total, 4,696 protein identifications were made across all iTRAQ experiments, at 5% false 
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discovery rate (FDR). This comprised 2,332 unique host-derived proteins and 22 M. tuberculosis–derived 
proteins (Supplemental Table 3). Of  these, 594 host proteins had a quantification result for every sample 
analyzed and therefore comprised the complete quantified proteome. While M. tuberculosis proteins were 
identified across all plasma segments, they were identified in both control and disease samples with low 
confidence and were not analyzed further after review of  individual mass spectra.

Plasma proteomes cluster by clinical condition and geographical cohort. Initial exploratory data analysis of  
the complete quantified proteome by unsupervised hierarchical clustering demonstrated clear separation 
of  the clinical groups (Figure 3A). Furthermore, the South African (label A_) and Peruvian cohorts (label 
P_) separated within clinical groups. This distinction was most marked within the HC plasma samples, 
with complete segregation depending on geographical location, whereas greater admixture occurred within 
the TB samples. Similarly, principal component analysis (PCA) confirmed clear separation between clini-
cal groups, manifest by PC1 and comprising 24% of  the variation within the data set (Figure 3B). Again, 
sample clustering by geographical cohort within clinical groups occurred, manifest through PC2, which 
contained 16% of  the variation within the data set (Figure 3B).

Figure 1. Integrated proteomic study design for TB biomarker identification and validation. (A) Discovery stage comprising sequential orthogonal 
fractionation of non-depleted plasma at both the protein and peptide level, iTRAQ peptide labeling, and tandem mass spectrometry for protein 
identification and relative quantification. Complementary bioinformatic analysis approaches (linear modeling, using limma, and WGCNA) were then 
used to identify and prioritize diagnostic biomarkers by combining outputs of these pipelines. (B) Candidate protein biomarkers were then validated 
by multiplex antibody-based techniques (Luminex and proximity extension assay) in serum samples from a separate patient cohort of HCs, pulmonary 
TB, and ORI of mixed sex and ethnicity. High-performing combinatorial panels were identified for key clinical comparisons and diagnostic performance 
assessed in 2 separate patient cohorts using binary logistic regression and receiver operating characteristic curves. iTRAQ, isobaric tags for relative 
and absolute quantification; nESI-MS2, nano-electrospray ionization tandem mass spectrometry; limma, linear modeling for microarray data; WGCNA, 
whole-gene correlation network analysis; PEA, proximity extension assay; NPX, normalized protein expression; TB, tuberculosis; HC, healthy control; 
ORI, other respiratory infections; ROC, receiver operating characteristic.
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Complementary bioinformatic analysis identifies 118 differentially expressed proteins in pulmonary TB. High con-
fidence protein identifications, extracted at 1% FDR, were taken forward for differential expression analy-
sis. Protein abundances from individual iTRAQ 8-plex experiments were combined following adjustment 
for experimental batch (22). FDR-corrected linear modeling (23) identified 195 differentially expressed 
proteins from analysis of  each plasma segment (Supplemental Table 4). A similar limma approach analyz-
ing the complete multi-consensus proteome yielded 148 differentially expressed proteins (Supplemental 
Table 5). In parallel, examining the data set by network correlation methodology (whole-gene correlation 
network analysis, WGCNA) (24), demonstrated hierarchical clustering by clinical group, but not experi-
mental set, and by cohort in the HCs (Figure 4A). Dendrogram analysis identified a large module of  195 
proteins that correlated very closely with disease status (correlation score 0.94, P = 2 × 10–9) (Figure 4B and 
Supplemental Table 6). Protein module significance scores within the turquoise module closely correlated 
to protein significance for pulmonary TB (Figure 4C; P = 6 × 10–134).

Figure 2. Bioinformatic analysis pipeline. Discovery proteomics experiments were conducted in 12 separate iTRAQ-labeled 8-plex experiments with block 
randomization of HC and TB samples into 3 experimental sets. Each plasma segment 8-plex experiment included 1 aliquot of a plasma master pool. Grouped 
protein abundances were calculated across plasma segments for each experimental set to permit analysis over the whole plasma proteome. Protein abundances 
were then combined by plasma segment and by experimental set and adjusted for experimental batch variation using ComBat. Differential protein expression 
was analyzed by limma. In parallel, the complete proteome was analyzed by WGCNA to identify protein networks most strongly correlated with TB. Proteins 
identified as significant by all 3 bioinformatic approaches were then prioritized for validation. iTRAQ, isobaric tags for relative and absolute quantification; Com-
Bat, adjustment for batch effects using an empirical Bayes framework (R package); WGCNA, whole-gene network correlation analysis; limma, linear modeling 
for microarray data (R package).
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Combined analysis of  all 3 bioinformatic analysis approaches identified 118 proteins that were signif-
icant through all statistical approaches (Figure 5A and Supplemental Table 7). Consequently, this group 
was taken forward as robust candidate diagnostic protein biomarkers. Analysis of  protein fold change by 
limma and correlation score by WGCNA demonstrated that 56 proteins were significantly upregulated and 
62 were significantly downregulated (Figure 5B).

Differentially expressed proteins reflect physiological changes in pulmonary TB. Chord plot analysis was per-
formed to demonstrate key proteins and their magnitude and directionality of  fold change relative to key 
biological processes from gene ontology analysis (Figure 6 and Supplemental Table 8). The predomi-
nant pathways were consistent with the known biology of  M. tuberculosis infection, such as inflammatory 
response, response to bacterium, and regulated exocytosis. However, the most represented process was pro-
teolysis, and proteins regulating extracellular matrix organization were also frequent. The final processes 
were negative regulation of  cellular metabolic process, lipid metabolic process, and platelet degranulation. 
Key proteins related to proteolysis included MMP2, TIMP2, fetuin-B (FETUB), SERPINA3, SERPINA4, 
SERPINA5, SERPIND1, and SERPINA10. MMP2 and TIMP2 are also key proteins related to extracel-
lular matrix organization, along with the collagen subunit COL15A1, von Willebrand factor (vWF), and 
ADAMTS13. Proteins related to exocytosis included SELL, CLEC3B, and LTA4H. CRP, lipopolysac-
charide-binding protein (LBP), S100A8, and S100A9 were expectedly linked to the acute inflammatory 
response. LRG1 and CD14 were key proteins in the response to bacterium. Network plot analysis further 
confirmed the importance of  proteolysis, inflammation, and exocytosis-related terms and their relationship 
to the differentially expressed proteins (Figure 7). Gene ontology analysis of  all differentially expressed 
proteins by cellular compartment showed that the proteins were associated with 6 main locations: endo-
plasmic reticulum lumen, the extracellular matrix, lipoprotein particles, insulin-like growth factor ternary 
complexes, secretory vesicles, and platelet granules (Supplemental Table 9). Analysis of  enriched molecular 
function terms indicates significant peptidase and endopeptidase activity, supporting a key role for proteol-
ysis in pulmonary TB (Supplemental Table 10).

Gene ontology analysis of  upregulated proteins by cellular component revealed significant enrichment 
for blood microparticles and fibrinogen complexes (Supplemental Figure 3A), with terms denoting binding 
to lipid mediators of  inflammation and lipopeptides being the dominant molecular functions (Supplemen-
tal Figure 3B). Analysis by biological process showed significant enrichment for the acute-phase response 

Figure 3. Summary data overview by unsupervised analysis. (A) Clustered heatmap for log2-transformed fully quantified protein abundances (n = 
594) shows clear separation of protein abundances between the HC and pulmonary TB groups. iTRAQ tags and clinical groups are indicated. Within 
HCs, distinct clustering was observed for discovery cohorts of different ethnicity (sample identification: A = South African, P = Peru). This was also 
observed within the TB group, although some overlap occurred. (B) Principal component analysis (PCA) of log2-transformed protein abundances 
demonstrates clear separation by clinical group, responsible for 24% of the variance within the data set. HC, healthy control; iTRAQ, isobaric tags 
for relative and absolute quantification; TB, tuberculosis.
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and acute inflammatory response (Supplemental Figure 3C and Supplemental Figure 4). The complement 
and coagulation pathway was the only enriched KEGG pathway by this analysis approach (Supplemental 
Figure 3D and Supplemental Figure 4). Gene ontology analysis of  downregulated proteins was strikingly 
dominated by lipid-related terms across all analyses (Supplemental Figures 5 and 6).

Proteins forming the matrisome, a group of  approximately 1000 genes encoding structural and regula-
tory proteins of  the extracellular matrix (25), were overrepresented within significantly differentiated pro-
teins. Forty-five of  the 118 (38%) divergently regulated proteins were from the matrisome, compared with 
the matrisome representing 5% of  the human proteome (26) reflective of  increased extracellular matrix 
turnover in TB (27) (Supplemental Figure 7).

Proximity extension analysis validates differential protein expression in the plasma of  individuals with pulmo-
nary TB in an independent patient cohort. We performed analysis by an antibody capture–based protein iden-
tification approach in an entirely different cohort, studying serum to validate the potential of  the MS-iden-
tified plasma biomarkers for a new diagnostic panel (Figure 8A). Circulating levels of  55 of  the 118 (47%) 
differentially expressed proteins were tested in an independent patient cohort of  mixed ethnicity and sex 
using an antibody-based proximity extension assay (PEA) (Olink Explore), using cardiometabolic and 
inflammatory panels, which gave the largest overlap with the 118 differentially expressed proteins. PEA 
plates hold a maximum of  88 samples, and so to maintain power, 3 groups were analyzed: HC, TB, and 
ORI. Serum samples were selected from the United Kingdom–based (UK-based) MIMIC cohort (Supple-
mental Table 11) and included individuals with pulmonary TB (TB, n = 32), HCs (n = 30) without risk 
factors for TB infection in whom latent TB infection had been ruled out by a negative IFN-γ release assay, 
and patients with symptoms suggestive of  TB but with microbiologically confirmed ORI (n = 26) (Supple-
mental Table 12). Thirty proteins (30/55, 55%) had confirmed differential expression between HCs and 
pulmonary TB, of  which 25 were upregulated and 5 downregulated (Supplemental Table 13). Fourteen 
proteins (14/55, 25%) showed differential expression between pulmonary TB and ORI. Four proteins, 
FCGR3B, FETUB, GGH, and SERPIND1, were present at significantly higher levels in the serum of  

Figure 4. Whole-genome correlation network analysis (WGCNA). (A) Hierarchical clustering of samples showing discrete clusters by clinical group and absence 
of clustering by experimental batch. Discrete clustering by cohort ethnicity is again observed in the HC group, but not in TB patients. (B) Protein dendrogram and 
module colors. Module turquoise, containing 195 proteins, had the strongest correlation with TB (correlation [z] score –0.94, P = 2 × 109). (C) A scatterplot of protein 
significance by clinical group confirming very high correlation of module turquoise with clinical group (0.95, P = 6 × 10–134). HC, healthy control; TB, tuberculosis.
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pulmonary TB patients than both HCs and ORI cases, thereby exhibiting a high degree of  specificity for 
TB (Figure 8B). Significantly reduced circulating levels of  RBP4 were demonstrated using Luminex meth-
odology, confirming the findings observed by MS (Supplemental Figure 8).

A 5-protein panel differentiates pulmonary TB from HCs. Diagnostic performance of  individual mark-
ers was evaluated using receiver operating characteristic (ROC) curves. ADA2 and CD14 were the 
best-performing individual markers, distinguishing TB from HCs with an area under the curve (AUC) 
of  0.904 and 0.885, respectively (Figure 9A). Biomarker combinations were then evaluated using 
CombiROC analysis, to identify panels with a minimum diagnostic sensitivity of  90% and specificity 
of  70%, thereby meeting WHO TPP characteristics of  a triage test for TB. ROC curves were generated 
following binary logistic regression of  biomarker combinations to classify TB from HC samples. A 
5-protein panel comprising ADA2, CD14, LRG1, TNFSF13B, and vWF gave an AUC of  0.943 (95% 
CI: 0.889–1.000; Figure 9A). This panel accurately classified patients in 88.7% of  cases, with a sensi-
tivity of  84.4% (95% CI: 67.3%–94.3%) and specificity of  93.3% (95% CI: 75.8%–98.8%; Figure 9B) 
at a probability cutoff  of  0.5 or greater. Analysis of  each analyte individually showed that they were 
highly significant compared with HCs, but were also significantly increased in ORI cases, suggesting 
they are not TB specific and are best suited for a rule-out test (Figure 9, C–G).

A 6-protein panel differentiates pulmonary TB from ORI. CombiROC analysis of  the 14 significantly 
differentially expressed proteins between TB and ORI was performed to identify the best-perform-
ing panel (Figure 10A). The combination above the defined threshold comprised FCGR3B, FETUB, 
GSN, IGFBP3, SELL, and CLEC3B (Figure 10B). This combination had an AUC of  0.906 (95% CI: 
0.8333–0.908), correctly classifying 79.3% of  cases with a sensitivity of  81.3% (95% CI: 63.0%–92.1%) 
and a specificity of  76.9% (95% CI: 56.0%–90.2%; Figure 10C) at a probability cutoff  of  0.5 or greater. 
Analysis of  individual analytes demonstrated that they were significantly different between TB and 
ORI (Figure 10, D–G), but only FCGR3B and FETUB were also significantly different from HCs 
(Figure 8, B and C).

Integration of  top-performing analytes into a single panel provides differentiation of  TB from both HCs and 
patients with ORI. A universal biomarker panel capable of  differentiating individuals with TB from both 
healthy individuals and individuals with ORI would be more widely applicable to different population 

Figure 5. Complementary bioinformatic analyses identify 118 significantly differentially expressed plasma proteins in TB. (A) Proteins identified by each 
bioinformatic approach: 190 from limma analysis of segmental plasma proteomes, 148 by limma analysis of complete plasma proteomes, and 195 proteins 
within WGCNA module turquoise. One hundred and eighteen proteins were found to be significantly differentially expressed via all 3 analytical approaches. (B) 
Volcano plot of all 118 significantly differentially expressed proteins by log2(fold change) by limma and correlation (z) score from WGCNA. Markers in the upper 
outer quadrants have the highest fold changes and strongest correlation to TB. All markers have a P value of less than 0.05 after adjustment for multiple 
testing within limma. limma, linear modeling for microarray data (R package); WGCNA, whole-genome correlation network analysis.

https://doi.org/10.1172/jci.insight.173273
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testing scenarios. Therefore, biomarker panel combinations were explored using proteins from each of  the 
differentiating panels to identify the best-performing universal biomarker panel for both group compari-
sons. A 6-protein marker combination of  FCGR3B, FETUB, LRG1, ADA2, CD14, and SELL performed 
very well for both group comparisons: TB versus HCs with an AUC of  0.972 (95% CI: 0.937–1.000), 
sensitivity of  90.6% (95% CI: 73.8%–97.5%), specificity of  90.0% (95% CI: 72.3%–97.4%; Figure 11, A 
and B); and TB versus ORI with an AUC of  0.930 (95% CI: 0.867–0.993), sensitivity of  90.6% (95% CI: 
66.5%–96.7%), and specificity of  80.8% (95% CI: 68.2%–94.5%) (Figure 11, C and D) at a probability cut-
off  of  0.5 or greater. Performance of  this final 6-protein panel was also evaluated by sex, as the discovery 
set had been exclusively male. This analysis confirmed the diagnostic performance of  markers in male 
patients, and notably exceeded this in female patients (Supplemental Figure 9).

The 6-protein panel discriminates TB from HCs and patients with ORI in a second independent patient cohort. An 
antibody-based PEA was then used to test the diagnostic performance of  the final 6-protein combination 
in a further independent cohort of  plasma samples collected in South Africa (Supplemental Table 14) (28). 
Samples were selected from HIV-negative individuals with microbiologically confirmed pulmonary TB 

Figure 6. Divergently regulated proteins link with key biological processes in pulmonary TB. A chord plot depicting proteins with a log2(fold change) 
greater than ±0.5 and their links to significantly enriched biological processes in TB. Gene ontology enrichment for biological process was performed using 
ShinyGO and only significant terms (FDR q ≤ 0.05) are shown. Plot generated with the R package GOplots.
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(TB, n = 29), HCs (n = 30) and individuals presenting with symptoms of  pulmonary TB but were negative 
for M. tuberculosis on subsequent microbiological testing (ORI, n = 19), as outlined in Supplemental Table 
13. Alternative diagnoses were not microbiologically confirmed in the ORI group due to the resource-limit-
ed healthcare setting, but symptoms were consistent with TB. Significantly elevated circulating levels of  all 
6 proteins in the panel were confirmed (Figure 12, A–F, and Supplemental Table 15). Analysis of  the diag-
nostic performance of  the 6-protein combined panel demonstrated diagnostic specificity for differentiation 
of  TB from both HCs (AUC 0.883 [95% CI: 0.796 – 0.968], sensitivity of  75.0% [95% CI: 54.8%–88.6%], 
and specificity of  83.3% [95% CI: 64.5%–93.7%]; Figure 12, G and I); and ORI (AUC 0.876 [95% CI: 
0.765–0.987], sensitivity of  92.9% [95% CI: 75.0%–98.8%], and specificity of  78.9% [95% CI: 53.9%–
93.0%]; Figure 12, H and J) at a probability cutoff  of  0.5 or greater. Diagnostic performance of  the final 
6-protein panel was also tested in both patient cohorts against a combined group of  both HCs and ORI, 
which confirmed preserved specificity of  performance (Supplemental Figure 10).

Discussion
TB remains a global catastrophe, and a fundamental issue in controlling the pandemic is the lim-
itations of  the diagnostic process, resulting in an estimated 4.2 million missed cases in 2022 (3). 
This diagnostic gap leads to ongoing transmission, morbidity and mortality, and long-term strain 
on healthcare systems (6, 29). A novel diagnostic assay with high levels of  accuracy would be trans-
formative, permitting population screening to find the missing millions and thereby break the cycle 
of  transmission (30). Indeed, mass screening is being increasingly advocated as a central pillar to 
control the TB pandemic (3, 7, 31–34). However, this requires new tools that are fit for purpose, utilizing 

Figure 7. Physiological changes in TB are reflected in the plasma proteome. Functional enrichment analysis by biological process was performed on the 118 
differentially expressed plasma proteins in TB. The gene concept network plot depicts the top 15 most enriched biological processes and their links to divergently 
regulated proteins. Gene ontology enrichment was performed using ShinyGO and the plot was generated using the cnetplot function in the R package GOplots.
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non–sputum-based approaches, but the incomplete understanding of  potential plasma biomarkers has 
considerably limited progress (3).

Here, we utilized a non-depletion quantitative proteomics approach to generate what we believe is the 
most detailed description of  the plasma proteome of  TB to date. Complementary bioinformatic analysis 
using linear modeling and correlation network analysis identified 118 differentially expressed proteins com-
pared with HCs. A large subset of  biomarkers were successfully validated in a separate clinical cohort by an 
antibody capture approach, demonstrating that analytes can progress to different platforms and overcome 
this hurdle that may limit translation of  proteomics-discovered biomarkers. Four TB-specific biomarkers, 
FETUB, FCGR3B, GGH, and SERPIND1, were increased in TB patients compared with both HCs and 
sick controls with ORI. Combinatorial analysis using a CombiROC approach identified a 6-protein biomark-
er panel that could distinguish active pulmonary TB from HCs and patients with ORI, achieving the TPP 
of  the WHO (6). Further validation in a second independent cohort demonstrated statistically significant 
elevation of  all 6 proteins in the plasma of  TB patients and confirmation of  high diagnostic performance of  
the combination panel, distinguishing active pulmonary TB from HCs and ORI. Our discovery proteomic 
protocol did not involve depletion steps, in contrast with many previous MS-based plasma proteomic studies 
in TB (10–12, 35, 36). Plasma depletion can remove proteins of  potential biological interest that are associat-
ed with the target protein by noncovalent interactions (18–20). We employed complementary bioinformatic 
methodologies to identify candidate biomarkers, with limma employing Bayesian statistics (23), while WGC-
NA circumvented limitations of  multiple comparisons by using unsupervised analysis methods to generate 

Figure 8. Discovery biomarker candidates validated by proximity extension analysis identify TB-specific biomarkers. (A) Flow chart outlining the 
analysis approach to identify significant biomarkers and the best-performing biomarker combinations from our integrated proteomics approach. (B–E) 
Box-and-whisker plots of 4 protein biomarkers significantly differentially expressed in TB compared with both HCs and ORI by proximity extension assay. 
Boxes show median values and interquartile ranges and whiskers show minimum to maximum values. Statistical differences were calculated using 1-way 
ANOVA with Tukey’s multiple-comparison test for data with a Gaussian distribution and Kruskal-Willis test with Dunn’s multiple-comparison test for 
nonparametrically distributed data. NPX, normalized protein expression (log2 scale); AUC, area under the curve; HC, healthy control (n = 30); TB, tubercu-
losis; (n = 32); ORI, other respiratory infections (n = 26); FCGR3B, low-affinity immunoglobulin receptor 3B; FETUB, fetuin-B; GGH, γ-glutamyl hydrolase; 
SERPIND1, serpin D1, also known as heparin cofactor 2. NS, P > 0.05; *P ≤ 0.05; **P ≤ 0.01, ***P ≤ 0.001; ****P ≤ 0.0001.
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modules of  coexpressed proteins that correlate with clinical traits (24). The 118 proteins identified by all 3 
complementary approaches were considered the strongest biomarker candidates.

We identified numerous previously described biomarkers of  TB such as CRP, LBP, serum amy-
loid A1 (SAA1), α-1-acid glycoprotein 1 (ORM1), and retinol-binding protein 4 (RBP4) alongside 
S100A8 and S100A9, the protein components of  calprotectin. In addition, we identified several 
biomarkers that we believe have not previously been described, such as lymphocyte cytosolic pro-
tein 1 (LCP1), γ-glutamyl hydrolase (GGH), marginal zone B and B1 cell–specific protein (MZB1), 
and FETUB, including proteins not known to be secreted into the extracellular compartment, 
such as transcription termination factor 1 (TTF1). LCP1 is a leukocyte-specific actin-binding pro-
tein that is required for podosome formation and function in macrophages (37). LCP1 has been 
identified in the phagosomes of  BCG-infected macrophages (38). GGH is a protease typically 
located in lysosomes, and serum GGH has been proposed to be a marker of  oxidative stress (39).  

Figure 9. A 5-protein biomarker panel distinguishes pulmonary TB from healthy controls. (A) Receiver operating characteristic (ROC) curve of the 
best-performing 5-biomarker combination distinguishing pulmonary TB from HCs, demonstrating an AUC of 0.943 (95% CI: 0.889–1.000). (B) Classifi-
cation grid illustrating diagnostic performance of the 5-protein biomarker panel in the validation cohort demonstrating a sensitivity of 84.4% (95% CI 
67.3%–94.3%), specificity of 93.3% (95% CI: 75.8%–98.8%), and correct classification in 88.7% of cases. (C–G) Box-and-whisker plots of the 5 constitu-
ent proteins significantly differentially expressed in TB compared with HCs by proximity extension assay. Boxes show median values and interquartile 
ranges and whiskers show minimum to maximum values. Statistical differences were calculated using 1-way ANOVA with Tukey’s multiple-compari-
sons test for data with a Gaussian distribution and Kruskal-Willis test with Dunn’s multiple-comparison test for nonparametrically distributed data. 
NPX, normalized protein expression (log2 scale); AUC, area under the curve; HC, healthy control (n = 30); TB, tuberculosis (n = 32); ORI, other respiratory 
infection (n = 26); ADA2, adenosine deaminase 2; CD14, monocyte differentiation antigen CD14; LRG1, leucine-rich α-2-glycoprotein; TNFSF13B, tumor 
necrosis factor ligand superfamily member 13B; vWF, von Willebrand factor. NS, P > 0.05; **P ≤ 0.01, ***P ≤ 0.001; ****P ≤ 0.0001.
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MZB1 aids peripheral B cell function and promotes secretions of  IgM antibodies (40, 41).  
TTF1 is a multifunctional protein that usually localizes to the nucleolus (42) and regulates transcrip-
tion of  surfactant protein B (SFTPB) in type 2 alveolar cells (43, 44). SFTPB is also upregulated in our 
data set.

Lung matrix destruction and cavitation is a hallmark of  pulmonary TB, which leads to morbidity, 
mortality, and increased disease transmission (45, 46). Our findings further highlight matrix turnover as a 
central process in TB. Gene ontology analysis of  differentially expressed proteins showed that the extra-
cellular matrix was the most significantly enriched cellular compartment; the most significantly enriched 

Figure 10. A 6-protein biomarker panel distinguishes pulmonary TB from other respiratory infections. (A) Bubble plot of possible protein combinations 
within the 14 proteins showing significant differential expression between TB and ORI groups, generated using the CombiROC R package. Dotted lines 
at 90% sensitivity and 70% specificity corresponding to the WHO Target Product Profile for a triage test for active TB. (B) Receiver operating character-
istic (ROC) curve of best-performing biomarker combination and constituent proteins. The 6-protein combined panel AUC = 0.906 (95% CI: 0.83–0.908). 
(C) Classification grid illustrating diagnostic performance of the 6-protein biomarker panel in the validation cohort demonstrating a sensitivity of 81.3% 
(95% CI: 63.0%–92.1%), specificity of 76.9% (95% CI: 56.0%–90.2%), and correct classification in 79.3% of cases. (D–G) Box-and-whisker plots of protein 
biomarkers significantly differentially expressed in TB compared with other respiratory infections by proximity extension assay. Box-and-whisker plots 
of FCGR3B and FETUB are shown in Figure 8. Boxes show mean values and interquartile ranges and whiskers show minimum to maximum values. NPX, 
normalized protein expression (log2 scale); AUC, area under the curve; HC, healthy control; TB, tuberculosis; ORI, other respiratory infections; CLEC3B, 
tetranectin; GSN, gelsolin; IGFBP3, insulin-like binding protein 3; SELL, L-selectin; FCGR3B, low-affinity immunoglobulin receptor 3B; FETUB, fetuin-B. NS, 
P > 0.05; *P ≤ 0.05; **P ≤ 0.01, ****P ≤ 0.0001.
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molecular functions were endopeptidase and peptidase inhibitor and regulator activity; and the highest pro-
portion of  significantly enriched biological processes related to proteolysis. The SERPINs are a large family 
of  serine protease inhibitors (47) and 8 SERPINs were differentially regulated, with elevated SERPIND1 
levels shown to have the highest specificity for TB. FETUB, a cysteine protease inhibitor, emerged as a key 
biomarker for pulmonary TB, but little is known about its pathological role. FETUB is part of  a 9-protein 
prognostic risk score in lung adenocarcinoma (48) and plasma levels correlate with worsening lung func-
tion in chronic obstructive pulmonary disease (COPD) (49), suggesting plasma FETUB levels may relate 
to destructive lung pathology.

Pulmonary TB is characterized by excessive inflammation (50), and we identified numerous inflam-
mation-related proteins such as CRP, S100A8, and S100A9. ADA2, CD14, and LRG1, part of  the final 
6-marker panel, have all been implicated in inflammatory responses. ADA2 induces the differentiation of  
monocytes to macrophages and stimulates macrophage and helper T cell proliferation (51); CD14 serves as 
a receptor for M. tuberculosis cell wall lipoarabinomannan (52, 53); while LRG1 is a marker for neutrophilic 
granulocyte differentiation, which we have previously shown to be elevated in the serum of  patients with 
pulmonary TB (21). FCGR3A and FCGR3B, low-affinity immunoglobulin receptors, were also upregulat-
ed. These only differ by 1 amino acid, with FCGR3A expressed on NK cells and FCGR3B in monocytes 
and macrophages (54). FCGR3B upregulation was relatively specific for TB, not being upregulated in ORI. 
Complement components were also upregulated, including C2, C4B, C8B, CFB, C9, and CFHR5, demon-
strating broad modulation of  this inflammatory pathway in TB disease (55).

Among the significantly downregulated proteins, lipid metabolism featured strongly, enriched for 
the lipoprotein cellular compartment, lipid binding, and lipid inflammatory mediator–binding molecular  

Figure 11. A final combined 6-protein panel discriminates patients with TB from both healthy controls and other respiratory infections. (A) ROC curve 
and (B) classification grid of the final 6-protein panel comprising FCGR3B, FETUB, LRG1, ADA2, CD14, and SELL, demonstrating discrimination of patients 
with TB from healthy controls (AUC 0.972 [95% CI: 0.937–1.000], sensitivity 90.6% [95% CI: 73.8%–97.5%], specificity 90.0% [95% CI: 72.3%–97.4%]). 
(C) ROC curve and (D) classification grid of the final 6-protein panel discriminating patients with TB from patients with other respiratory infections (AUC 
0.930 [95% CI: 0.867–0.993], sensitivity 90.6% [95% CI: 66.5–96.7], specificity 80.8% [95% CI: 68.2–94.5]). All ROC curves and classification grids were 
generated using SPSS v28.0.1.0 after binary logistic regression for combined proteins. AUC was calculated under nonparametric assumption. TB was set as 
the positive test outcome and the test direction such that a larger test result indicates a more positive test. ROC, receiver operating characteristic; ADA2, 
adenosine deaminase 2; CD14, monocyte differentiation antigen; FCGR3B, low-affinity immunoglobulin receptor 3B; FETUB, fetuin-B; LRG1, leucine-rich 
α-2-glycoprotein; SELL, L-selectin; TB, tuberculosis; HC, healthy control; ORI, other respiratory infections.
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Figure 12. The final 6-protein panel differentiates TB from both HC and ORI in a separate clinical cohort. (A–F) Box-and-whisker plots of the 6 
proteins in the panel in pulmonary TB compared with HC and ORI by proximity extension assay. Boxes show median values and interquartile ranges 
and whiskers show minimum to maximum values. Statistical differences were calculated using 1-way ANOVA with Tukey’s multiple-comparison 
test for data with a Gaussian distribution and Kruskal-Willis test with Dunn’s multiple-comparison test for nonparametrically distributed data. (G) 
Receiver operating characteristic (ROC) curve of the 6-protein panel distinguishing pulmonary TB from HCs. The 6-protein combined panel AUC = 
0.882 (95% CI: 0.796–0.968). Full coordinates in Supplemental Table 16. (H) ROC curve of the 6-protein panel distinguishing pulmonary TB from 
ORI, AUC = 0.876 (95% CI: 0.765–0.987). Full coordinates in Supplemental Table 17. (I) Classification grid illustrating diagnostic performance of the 
6-protein panel distinguishing pulmonary TB from HCs, demonstrating a sensitivity of 75.0% (95% CI: 54.8%–88.6%), specificity of 83.3% (95% CI: 
64.5%–93.7%), and correct classification in 79.3% of cases in this cohort. (J) Classification grid illustrating diagnostic performance of the 6-protein 
panel distinguishing pulmonary TB from other respiratory infection, demonstrating a sensitivity of 92.9% (95% CI: 75.0%–98.8%), specificity of 
78.9% (95% CI: 53.9%–93.0%), and correct classification in 87.2% of cases in this cohort. All ROC curves and classification grids were generated 
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functions. Lipid metabolism and systemic inflammation are inextricably intertwined (56), with eico-
sanoid-mediated inflammatory imbalance implicated in human TB (57). Leukotriene A4 hydrolase 
(LTA4H) is elevated in TB and has been implicated in the spatial organization of  lipid signaling within 
TB lung granulomas by a proteomics approach (58), and regulates susceptibility to infection (59). Addi-
tionally, previous hypothesis-directed approaches have shown lower levels of  cholesterol, HDL-C, and 
LDL-C levels in pulmonary TB patients compared with controls (60).

Differences in TB pathogenesis between ethnic groups has been recognized for over a century (61, 62), 
and ethnicity has been shown to be a powerful determinant of  clinical TB phenotype, independent of  M. 
tuberculosis strain lineage (63). We analyzed plasma samples from 2 geographical origins, South Africa and 
Peru, and identified differences in the plasma proteome by region both in HCs and in TB patients. Such 
geographical differences need consideration in developing new diagnostic tests (64). Reassuringly, our top 
candidate biomarkers were validated in an independent cohort of  mixed ethnicity and sex, and the 6-pro-
tein biomarker panel in a further independent clinical cohort of  mixed sex.

Previous studies have explored circulating biomarkers of  TB disease utilizing diverse approaches. 
Luminex-based analysis of  HIV-negative individuals from sub-Saharan African countries for prespec-
ified analytes has identified a 2-protein panel and a 9-protein panel, both including CRP, that distin-
guish TB from other respiratory diseases, with comparatively high sensitivity, but lower specificity 
(14, 15). A Simoa ultrasensitive immunoassay comprising 4 host proteins and an antibody against TB 
antigen Ag85B was also able to discriminate between patients with TB and those with other respira-
tory diseases, but had lower performance characteristics than our biomarker panel, and, importantly, 
requires a specific reader (65). In another study, analysis by aptamer-based SOMAscan assays identi-
fied a 6-protein panel comprising cytoplasmic tryptophan-tRNA ligase (SYWC), kallistatin, C9, gel-
solin, testican-2, and aldolase C (16), which could distinguish TB from non-TB samples with a similar 
sensitivity and specificity to our panel, though limited data were available regarding the patients that 
made up the non-TB group. Our unbiased discovery approach using geographically diverse popula-
tions demonstrates a robust method for the identification of  protein biomarkers with higher specificity 
for differentiating TB disease in carefully phenotyped comparator groups of  HCs and ORI. Evidently, 
the performance of  our proposed biomarkers will require validation in additional cohorts, includ-
ing patients with extrapulmonary TB and individuals with HIV coinfection, which present additional 
diagnostic challenges (66). An assay will be needed that meets the WHO ASSURED criteria for a 
point-of-care test for use in resource-limited settings, being affordable, sensitive, specific, user-friendly, 
rapid, equipment-free, and deliverable to those in need (67). Recent developments in integrated micro-
fluidic systems may allow the translation of  diagnostic panels into an immunoassay-based lab-on-a-chip 
system, that would have potential for near-patient use (6).

In summary, our integrated proteomics approach has identified TB-specific circulating biomarkers 
of  disease among a group of  118 divergently regulated proteins identified through a rigorous bioinfor-
matic pipeline. A 6-protein biomarker panel can discriminate individuals with active pulmonary TB 
from healthy individuals and from those with other bacterial or viral pulmonary infections, with poten-
tial for onward development into a point-of-care test suitable for mass population screening. The diag-
nostic potential of  these protein biomarkers and panels require further validation in key clinical groups, 
such as HIV-coinfected individuals and in cohorts with high coprevalence of  common comorbidities 
such as diabetes and COPD. Additionally, although our study focused on separating infection from 
TB, in future comparison with sarcoidosis, autoimmune pneumonias, or chronic fungal pneumonias in 
specific settings where these are prevalent will also be warranted. While future validation in different 
cohorts and development of  a near-patient assay represent significant future hurdles, we propose that 
these findings provide critical knowledge to develop an initial screening assay that can be used to triage 
patients to pathways involving more expensive confirmatory testing for TB (7, 68). Such active case 
finding will help to close the case-detection gap that is fueling the ongoing TB pandemic.

using SPSS v28.0.1.0 after binary logistic regression for combined proteins. AUC was calculated under nonparametric assumption. TB was set as the 
positive test outcome and the test direction such that a larger test result indicates a more positive test. NPX, normalized protein expression (log2 
scale); AUC, area under the curve; HC, healthy control (n = 30); TB, tuberculosis (n= 29); ORI, other respiratory infection (n = 19); ADA2, adenosine 
deaminase 2; CD14, monocyte differentiation antigen CD14; LRG1, leucine-rich α-2-glycoprotein; TNFSF13B, tumor necrosis factor ligand superfami-
ly member 13B; vWF, von Willebrand factor. NS, P > 0.05; *P ≤ 0.05; ***P ≤ 0.001; ****P ≤ 0.0001.
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Methods

Sex as a biological variable
Sex has been carefully considered as a biological variable in this investigation. For the discovery plasma 
MS, only samples from male patients were used, as males exhibit the most florid pulmonary TB pathol-
ogy. For both validation cohorts, samples from males and females were tested, and ratios are presented 
in Supplemental Tables 11 and 14.

Study participants
Participants in the discovery experiment were recruited in 2 separate cohorts. The South African cohort 
was recruited at Ubuntu TB/HIV clinic in Cape Town from June 2012 to February 2014 and were of  Black 
African ethnicity (28). Written informed consent was provided. The diagnosis of  active TB was based on 
sputum smear or culture positivity, GeneXpert results where available, and chest radiograph findings. For 
HCs, sputum samples were smear and culture negative for acid-fast bacilli. The Peruvian cohort was recruit-
ed at clinics in Lima, Peru during 2015. The diagnosis of  TB was based on TB symptoms, sputum smear and 
culture positivity, and chest radiograph findings. HCs were QuantiFERON negative, excluding coincidental 
latent TB infection (LTBI). Plasma samples from male HIV-negative participants were randomly selected for 
the discovery experiment from either cohort if  they were between the ages of  18 and 50 years old and had 
a BMI between 16 and 26 and there was sufficient sample for analysis. Exclusion criteria included anemia 
(Hb ≤ 8 g/dL), significant renal impairment (creatinine ≥ 150 μm/L), significant hepatic disease (ALT ≥ 80 
IU/L), and known malignancy or diabetes mellitus. Patients with active TB had not yet commenced treat-
ment at the time of  plasma sampling.

Participants in validation cohort 1 were from the UK-based MIMIC cohort of  mixed ethnicity. Patients 
were recruited between June 2014 and February 2017. All participants in the MIMIC study were UK residents 
at the time of  sample collection and were HIV-negative. HCs were asymptomatic, without a history of  previ-
ous TB disease, TB contact or travel to a high TB prevalence area, and no evidence of  LTBI in IFN-γ release 
assay testing. Active pulmonary TB cases were symptomatic individuals with microbiologically confirmed 
TB by either sputum smear, sputum culture, or positive PCR for M. tuberculosis. Individuals with ORI were 
symptomatic with microbiologically confirmed respiratory tract infection caused by a pathogen other than M. 
tuberculosis, without a history of  previous active TB. The causative agents in this group comprised influenza 
virus A and B, respiratory syncytial virus, human metapneumovirus, Streptococcus pneumoniae, Staphylococcus 
aureus, and Mycoplasma pneumoniae. All participants in validation cohort 2 were resident in Khayelitsha, Cape 
Town at the time of  sample collection, were of  Black African ethnicity, and HIV-uninfected. The diagnosis of  
TB was based on TB symptoms, sputum smear and culture positivity, and chest radiograph findings.

Sample processing
For the discovery experiment, venous blood was collected in sodium heparin vacutainer tubes and plasma 
prepared according to standard operating procedures at the site of  recruitment and stored at –80°C. Aliquots 
of  120 μL of  plasma were liquid fixed with 380 μL of  7 M guanidine hydrochloride and 10% methanol 
and stored at –20°C until size exclusion chromatography. Aliquots of  20 μL of  each plasma sample in the 
discovery experiment was combined to generate a master-pool sample to help mitigate batch effects across 
different proteomic experiments.

For the validation experiment in the MIMIC cohort, venous blood was collected in serum vacutainer 
tubes and serum prepared according to standard operating procedures at the site of  recruitment and stored 
in 100 μL aliquots at –80°C. For PEA, serum samples were thawed, centrifuged for 10 minutes at 455g, 
and 40 μL per sample aliquoted into a 96-well plate and re-frozen at –80°C until analysis at the Oxford 
Genomics Centre.

Discovery proteomic analysis
High-performance size-exclusion chromatography and protein digestion. The methodology for high-performance 
size-exclusion chromatography has been previously described (21). Total protein lyophilized extracts from 
each plasma segment were reconstituted with 0.5 M triethylammonium bicarbonate and 0.05% sodium 
dodecyl sulphate and sonicated on ice. Following centrifugation at 16,000g for 10 minutes at 4°C, protein 
content was estimated using a Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific) at 280 nm. 
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Volume-adjusted 120 μg of  protein was reduced with 2 μL of 50 mM Tris-2-carboxymethyl phosphine and 
incubated at 60°C for 1 hour. Samples were then alkylated using 1 μL of 200 mM methylmethane thiosulpho-
nate and incubated for 10 minutes at room temperature. Protein digestion was conducted at a ratio of  1:40 
enzyme/substrate with trypsin MS grade (Pierce, Thermo Fisher Scientific) overnight at 37°C in the dark.

iTRAQ labeling. Isopropanol was added to iTRAQ labels to ensure more than 60% organic phase during 
sample labeling and each tag was added to the appropriate trypsinized sample. The master pool was labeled 
using tag 113, and the samples were block randomized to the remaining tags according to Supplemental Table 2. 
The labeling reaction was conducted for 2 hours at room temperature and the reaction stopped with 8 μL of 5% 
ammonium hydroxylamine. Samples were lyophilized and stored at –20°C until chromatographic separation.

Peptide fractionation. Offline peptide fractionation was performed at high pH (0.08% NH4OH) using 
a C4 column (Kromasil, 3.5 μm, 2.1 mm × 150 mm) on a Shimazdu HPLC system. iTRAQ-labeled pep-
tides were reconstituted and pooled with 100 μL of  mobile phase and centrifuged at 16,000g at room 
temperature for 10 minutes. Supernatant was injected and separated at a flow rate of  0.3 mL/min at 30°C. 
Fractions were collected by peak detected at 215 nm. Peptide fractions were dried using a Speedvac con-
centrator (Thermo Fisher Scientific) and stored at –20°C until LC-MS/MS analysis. Highly hydrophilic 
and hydrophobic fractions from the extreme regions of  the chromatographic traces were pooled and further 
cleaned using Gracepure SPE C18-AQ 100 mg/1 mL cartridges (Thermo Fisher Scientific).

MS analysis. Peptide fractions were analyzed using a Dionex Ultimate UHPLC system coupled to a 
nano-ESI-LTQ-Velos Pro Orbitrap Elite mass spectrometer (Thermo Fisher Scientific). Online chromato-
graphic separation of  each peptide fraction was conducted using an AcclaimPepMap RSLC C18 nanoVi-
per column (Thermo Fisher Scientific; 2 μm, 75 μm × 25 cm). This was retrofitted to a PicoTip emitter 
(New Objective, FS360-20-10-D-20-C7) for injection into the mass spectrometer. MS characterization of  
eluting peptides was conducted between 380 and 1500 m/z. The top 10 +2 and +3 precursor ions were 
further characterized by tandem MS (MS/MS). Higher energy collisional dissociation (HCD) and colli-
sion-induced dissociation (CID) fragmentation for each of  the collected fractions was performed.

Full MS scans and MS/MS scans were acquired at a resolution of  30,000 full width at half  maximum 
(FWHM) for set C segments 1–3, and 60,000 FWHM for all further plasma segments. Data were acquired 
using Xcalibur software (Thermo Fisher Scientific). Conditions for ionization, CID and HCD fragmenta-
tion, and ion detection for this method have been previously reported (69).

MS data processing. Target decoy searching of raw mass spectra was conducted with Proteome Discoverer 
v2.4 (Thermo Fisher Scientific). Sequest HT was used for target decoy search for tryptic peptides, allowing 2 
missed cleavages, 10 ppm mass tolerance, and a minimum peptide length of 6 amino acids. Dynamic mod-
ifications of oxidation (M), deamidation (N, Q), and phosphorylation (S, T, Y) and static modifications of  
iTRAQ 8plex (N-terminus, K) and meythylthio (C) were permitted. Fragment ion mass tolerance was 0.02 
Da for HCD-generated spectra and 0.5 Da for CID-generated spectra. Percolator was set to a concatenated 
strategy for target decoy selection with a strict FDR target of 0.01 and relaxed FDR target of 0.05. Spectra 
were searched against a concatenated FASTA file comprising the UniProtKB SwissProt human proteome and 
the reference M. tuberculosis H37Rv proteome (SwissProt and TrEMBL). Unique peptide spectrum matches 
were taken through to consensus workflow allowing a 50% co-isolation threshold and a signal-to-noise ratio 
of 3. Normalization was to total peptide amount and scaling was to controls average. This scaling enabled 
a multi-consensus workflow to generate grouped protein abundances across all 4 plasma segments for each 
experimental set. Protein abundances were imported to R (http://www.rstudio.com/) for log2 transformation, 
median normalization, data visualization, and bioinformatic analysis. Data from plasma samples from TB 
patients labeled with iTRAQ tags 118 and 121 in experimental set C were excluded from further analysis at this 
stage due to failure of normalization (tag 118) and clustering with the control group (121). Clinically, the latter 
patient had microbiologically confirmed pulmonary TB, but minimal chest x-ray changes and a normal CRP.

Validation proteomic analysis
Serum samples from the MIMIC cohort were thawed and centrifuged at 15,000g for 10 minutes at 4°C. 
Serum was aliquoted onto 96-well PCR plates and transported on dry ice to the Oxford Genomics Centre 
for analysis. PEA was performed as per the proteomic method that has been previously described (70) using 
Olink Explore Cardiometabolic and Inflammation II panels. Each assay has been extensively validated for 
limit of  detection, measurement ranges, precision, reproducibility, and specificity as detailed at https://
olink.com/our-platform/assay-validation/#explore.

https://doi.org/10.1172/jci.insight.173273
https://insight.jci.org/articles/view/173273#sd
http://www.rstudio.com/
https://olink.com/our-platform/assay-validation/#explore
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Statistics
Discovery proteomics. Differentially expressed proteins were identified using linear modeling with the 
R package limma (23), including FDR correction for multiple comparisons and network correlation 
analysis using the R package WGCNA (24). The limma package was applied to combined data from 
each plasma segment and on multi-consensus analyses, following adjustment for experimental batch 
effects using the R package ComBat (22). WGCNA was applied to ComBat-adjusted data for com-
bined multi-consensus analyses. WGCNA was used to determine clusters of  highly correlated proteins 
(color modules) and explore their correlation with phenotypic traits. Module significance is expressed 
as a correlation score with statistical significance. Gene ontology enrichment analysis was conducted 
using ShinyGO (71), with all proteins identified from the discovery experiment as a background pro-
teome. Only gene ontology terms with an FDR-adjusted P value of  less than 0.05 were considered. 
Graphical visualizations of  the enrichment analysis were generated using the R package clusterProfiler 
(72) for cnet plots and GOplots for chord plots.

Validation proteomics. Differences in protein expression between groups for PEA measurements were 
analyzed using GraphPad Prism v9. Data distributions were examined for normality and differences ana-
lyzed by 1-way ANOVA if  Gaussian distribution was found. For nonparametrically distributed data, differ-
ences between groups were analyzed using the Kruskal-Wallis method with Dunn’s test for multiple com-
parisons. A P value of  less than 0.05 was considered statistically significant. Combinatorial performance of  
biomarkers was assessed using the R package CombiROC (73). ROC curves for clinical group classification 
were then explored for the best performing biomarker panels following binary logistic regression using 
SPSS v28.0.1.0 (IBM Statistics).

Study approval
All clinical studies were conducted according to the Declaration of  Helsinki principles. All participants 
gave written informed consent. The South African cohort was recruited under University of  Cape Town 
Research Ethics Committee approval (HREC, REF 516/2011). Enrollment of  participants in the Peruvian 
study was approved by the Universidad Peruana Cayetano Heredia Institutional Review Board (SIDISI 
65314). University of  Southampton Ethics and Research Governance approval was given for transport-
ing samples to the UK for analysis (approval 17758). The MIMIC study was approved by the National 
Research Ethics Service Committee South Central (REF 13 SC 0043).

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 
via the PRIDE partner repository with the data set identifier PXD051070 (74). Selected PEA data are 
available in Supplemental Tables 13 and 15. Values for all data points shown in graphs are reported in 
the Supporting Data Values file. Further data and analysis code are available from the corresponding 
author on request.
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